Time, Speed & Distance
Aptitude

 Back to Questions
Q.

$A$ and $B$ start running simultaneously. $A$ runs from point $P$ to point $Q$ and $B$ from point $Q$ to point $P$. $A$'s speed is 6/5 of $B$'s speed. After crossing $B$, if $A$ takes 5/2 hr to reach $Q$, how much time does $B$ take to reach $P$ after crossing $A$?

 A.

3 hr 6 min

 B.

3 hr 16 min

 C.

3 hr 26 min

 D.

3 hr 36 min

 Hide Ans

Solution:
Option(D) is correct

$A->......................................<-B$

\(\begin{align*} \dfrac{V_A}{V_B}=\sqrt{\left(\dfrac{t_B}{t_A}\right)}\\ \Rightarrow \left(\dfrac{6}{5}\right)^2=\dfrac{t_B}{t_A}\\ t_B=\dfrac{36}{25}\times \dfrac{5}{2}\\ \end{align*}\)

= 3.6 hour 
3 hr 36 min


(1) Comment(s)


Anurag
 ()

can anyone please explain the solution in detail