Aptitude Discussion

Q. |
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which are in $A.P$. When 30 of the instalments are paid he dies leaving one-third of the debt unpaid. The value of the $8^{th}$ instalment is: |

✖ A. |
Rs 35 |

✖ B. |
Rs 50 |

✔ C. |
Rs 65 |

✖ D. |
Rs 70 |

**Solution:**

Option(**C**) is correct

Let the first instalment be '$a$' and the common difference between any two consecutive instalments be '$d$'

Using the formula for the sum of an $A.P$.

\(S=\dfrac{n}{2}[2a+(n-1)d]\)

We have,

\(3600=\dfrac{40}{2}[2a+(40-1)d]\)

\(\Rightarrow 180=2a+39d\)-------- (i)

\(2400=\dfrac{30}{2}[2a+(30-1)d]\)

\(\Rightarrow 160=2a+29d\)-------- (ii)

On solving both the equations we get:

$d=2$ and $a=51$

Value of $8^{th}$ instalment $=51+(8−1)2$

= **Rs 65**

**Pawan**

*()
*

$S_8= a+(8-1)d$

Hence $51 + 7 \times 2 = 65$

Yeah Gamer is right.

hey hw to find 8t installment..is der ny formula..how u gt Value of 8th instalment $=51+(8-1)2$

$= \text{Rs. } 65$