Geometry & Mensuration
Aptitude

 Back to Questions
Q.

In the rectangular solid above, the three sides shown have areas 12, 15, and 20, respectively. What is the volume of the solid?

Image for Mensuration, Aptitude:2177-1

 A.

40

 B.

50

 C.

60

 D.

80

 Hide Ans

Solution:
Option(C) is correct

In the figure above,

Answer image for Mensuration, Aptitude:2177-1

The areas of the three sides are given by \(HW, HL,\) and \(LW\).

Assuming \(HW=12 = (3)(4), HL = 15 = (3)(5),\) and

\(LW= 20 = (5)(4),\)

it is clear that possible choices for the edge lengths are 

\(H= 3, W=4, \)and \(L =5\)

Therefore, the volume of the rectangular solid is

\(=(3)(4)(5) \)

\(=60\)

Edit: For an alternative method (and a good one), kindly check KARTIK's comment.


(3) Comment(s)


Smit
 ()

We can simply take LCM of areas of all side i.e LCM(12,15,20)=60



KARTIK
 ()

we know

volume of cuboid is $= LBH$

here we have $LB$, $BH$, $HL$

so if we multiply them $= LB \times BH \times LH=(LBH)^2$

Root of above would give the ans.

(if u have trouble searching possible choices)


Kriti
 ()

This is an awesome alternative solution, for those who are wondering how to calculate root vale, here is my take:

$\Rightarrow LB \times BH \times LH=(LBH)^2$

$=(\text{Volume})^2= (12) \times (15) \times (20)$

$\Rightarrow \text{Volume} = \sqrt{(4 \times 3)(5 \times 3)\times (4 \times 5)}$

$\Rightarrow \text{Volume}= 3 \times 4 \times 5$

$\Rightarrow \text{Volume}= \textbf{60}$