Reading Comprehension
Verbal Ability

 Back to Questions

Common Information

Newton’s surprising success at developing the laws of motion, as well as the development and refinement of other physical laws, led to the idea of scientific determinism. The first expression of this principle was in the beginning of the nineteenth century by Laplace, a French scientist. Laplace argued that if one knew the position and velocity of all the particles in the universe at a given time, the laws of physics would be able to predict the future state of the universe.

Scientific determinism held sway over a great many scientists until the early twentieth century, when the quantum mechanics revolution occurred. Quantum mechanics introduced the world to the idea of the uncertainty principle, which stated that it was impossible to accurately measure both the position and the velocity of a particle at one time. Because Laplace’s omniscience could never occur, even in theory, the principle of scientific determinism was thrown into doubt. However, quantum mechanics does allow for a reduced form of scientific determinism. Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions. By use of a formula known as the Schrodinger equation, a scientist with the wave function of a particle at a given time can calculate the particle’s future wave function. These calculations can give the particle’s position or velocity, but not both. Thus, the physicist is in possession of exactly half of the information needed to satisfy Laplace’s view of determinism. Unfortunately, under modern physics theories, that is far as any researcher can go in predicting the future.

Q.

Common Information Question: 2/4

According to the passage, wave functions:

 A.

allow scientists to determine the position and velocity of a particle

 B.

are determined by the Schrodinger equation

 C.

provide a range of possible locations and velocities for a particle

 D.

allow a scientist to calculate the future state of the universe

 E.

threw the proposition of scientific determinism into doubt

 Hide Ans

Solution:
Option(C) is correct

The relevant part of the passage is here: "Even though physicists are unable to know precisely where a particle is and what its velocity is, they can determine certain probabilities about its position and velocity. These probabilities are called wave functions." Since wave functions are probabilities, they present a range of possibilities, as choice C states.

Choice A is contradicted by the passage.

Choice B is incorrect based on the information in the passage.

Choice D is wrong because wave functions only allow scientists to figure out a probability, not the future state.

Choice E is wrong because the passage states that the uncertainty principle threw determinism into doubt.


(0) Comment(s)